Termination of the given ITRSProblem could not be shown:



ITRS
  ↳ ITRStoQTRSProof

ITRS problem:
The following domains are used:

z

The TRS R consists of the following rules:

Cond_eval(TRUE, x, y) → eval(-@z(x, 1@z), y)
eval(x, y) → Cond_eval(>@z(x, y), x, y)

The set Q consists of the following terms:

Cond_eval(TRUE, x0, x1)
eval(x0, x1)


Represented integers and predefined function symbols by Terms

↳ ITRS
  ↳ ITRStoQTRSProof
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

Cond_eval(true, x, y) → eval(minus_int(x, pos(s(0))), y)
eval(x, y) → Cond_eval(greater_int(x, y), x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))


Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, x, y) → EVAL(minus_int(x, pos(s(0))), y)
COND_EVAL(true, x, y) → MINUS_INT(x, pos(s(0)))
EVAL(x, y) → COND_EVAL(greater_int(x, y), x, y)
EVAL(x, y) → GREATER_INT(x, y)
MINUS_INT(pos(x), pos(y)) → MINUS_NAT(x, y)
MINUS_INT(neg(x), neg(y)) → MINUS_NAT(y, x)
MINUS_INT(neg(x), pos(y)) → PLUS_NAT(x, y)
MINUS_INT(pos(x), neg(y)) → PLUS_NAT(x, y)
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)
GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

The TRS R consists of the following rules:

Cond_eval(true, x, y) → eval(minus_int(x, pos(s(0))), y)
eval(x, y) → Cond_eval(greater_int(x, y), x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, x, y) → EVAL(minus_int(x, pos(s(0))), y)
COND_EVAL(true, x, y) → MINUS_INT(x, pos(s(0)))
EVAL(x, y) → COND_EVAL(greater_int(x, y), x, y)
EVAL(x, y) → GREATER_INT(x, y)
MINUS_INT(pos(x), pos(y)) → MINUS_NAT(x, y)
MINUS_INT(neg(x), neg(y)) → MINUS_NAT(y, x)
MINUS_INT(neg(x), pos(y)) → PLUS_NAT(x, y)
MINUS_INT(pos(x), neg(y)) → PLUS_NAT(x, y)
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)
GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

The TRS R consists of the following rules:

Cond_eval(true, x, y) → eval(minus_int(x, pos(s(0))), y)
eval(x, y) → Cond_eval(greater_int(x, y), x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 6 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

The TRS R consists of the following rules:

Cond_eval(true, x, y) → eval(minus_int(x, pos(s(0))), y)
eval(x, y) → Cond_eval(greater_int(x, y), x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

R is empty.
The set Q consists of the following terms:

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATER_INT(x1, x2)) = 2·x1 + x2   
POL(neg(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

The TRS R consists of the following rules:

Cond_eval(true, x, y) → eval(minus_int(x, pos(s(0))), y)
eval(x, y) → Cond_eval(greater_int(x, y), x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

R is empty.
The set Q consists of the following terms:

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATER_INT(x1, x2)) = 2·x1 + x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

The TRS R consists of the following rules:

Cond_eval(true, x, y) → eval(minus_int(x, pos(s(0))), y)
eval(x, y) → Cond_eval(greater_int(x, y), x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

The TRS R consists of the following rules:

Cond_eval(true, x, y) → eval(minus_int(x, pos(s(0))), y)
eval(x, y) → Cond_eval(greater_int(x, y), x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(x, y) → COND_EVAL(greater_int(x, y), x, y)
COND_EVAL(true, x, y) → EVAL(minus_int(x, pos(s(0))), y)

The TRS R consists of the following rules:

Cond_eval(true, x, y) → eval(minus_int(x, pos(s(0))), y)
eval(x, y) → Cond_eval(greater_int(x, y), x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(x, y) → COND_EVAL(greater_int(x, y), x, y)
COND_EVAL(true, x, y) → EVAL(minus_int(x, pos(s(0))), y)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Cond_eval(true, x0, x1)
eval(x0, x1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(x, y) → COND_EVAL(greater_int(x, y), x, y)
COND_EVAL(true, x, y) → EVAL(minus_int(x, pos(s(0))), y)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: COND_EVAL(true, x, y) → EVAL(minus_int(x, pos(s(0))), y)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
QDP
                        ↳ RemovalProof
                        ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(x, y, x_removed) → COND_EVAL(greater_int(x, y), x, y, x_removed)
COND_EVAL(true, x, y, x_removed) → EVAL(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: COND_EVAL(true, x, y) → EVAL(minus_int(x, pos(s(0))), y)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
QDP
                        ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(x, y, x_removed) → COND_EVAL(greater_int(x, y), x, y, x_removed)
COND_EVAL(true, x, y, x_removed) → EVAL(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule EVAL(x, y) → COND_EVAL(greater_int(x, y), x, y) at position [0] we obtained the following new rules [LPAR04]:

EVAL(neg(s(x0)), neg(0)) → COND_EVAL(false, neg(s(x0)), neg(0))
EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
EVAL(neg(s(x0)), pos(s(x1))) → COND_EVAL(false, neg(s(x0)), pos(s(x1)))
EVAL(neg(0), neg(s(x0))) → COND_EVAL(true, neg(0), neg(s(x0)))
EVAL(neg(s(x0)), neg(s(x1))) → COND_EVAL(greater_int(neg(x0), neg(x1)), neg(s(x0)), neg(s(x1)))
EVAL(neg(0), pos(0)) → COND_EVAL(false, neg(0), pos(0))
EVAL(pos(0), neg(0)) → COND_EVAL(false, pos(0), neg(0))
EVAL(neg(0), neg(0)) → COND_EVAL(false, neg(0), neg(0))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(0), pos(0)) → COND_EVAL(false, pos(0), pos(0))
EVAL(neg(0), pos(s(x0))) → COND_EVAL(false, neg(0), pos(s(x0)))
EVAL(neg(s(x0)), pos(0)) → COND_EVAL(false, neg(s(x0)), pos(0))
EVAL(pos(0), pos(s(x0))) → COND_EVAL(false, pos(0), pos(s(x0)))
EVAL(pos(0), neg(s(x0))) → COND_EVAL(true, pos(0), neg(s(x0)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
QDP
                            ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, x, y) → EVAL(minus_int(x, pos(s(0))), y)
EVAL(neg(s(x0)), neg(0)) → COND_EVAL(false, neg(s(x0)), neg(0))
EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
EVAL(neg(s(x0)), pos(s(x1))) → COND_EVAL(false, neg(s(x0)), pos(s(x1)))
EVAL(neg(0), neg(s(x0))) → COND_EVAL(true, neg(0), neg(s(x0)))
EVAL(neg(s(x0)), neg(s(x1))) → COND_EVAL(greater_int(neg(x0), neg(x1)), neg(s(x0)), neg(s(x1)))
EVAL(neg(0), pos(0)) → COND_EVAL(false, neg(0), pos(0))
EVAL(pos(0), neg(0)) → COND_EVAL(false, pos(0), neg(0))
EVAL(neg(0), neg(0)) → COND_EVAL(false, neg(0), neg(0))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(0), pos(0)) → COND_EVAL(false, pos(0), pos(0))
EVAL(neg(0), pos(s(x0))) → COND_EVAL(false, neg(0), pos(s(x0)))
EVAL(neg(s(x0)), pos(0)) → COND_EVAL(false, neg(s(x0)), pos(0))
EVAL(pos(0), pos(s(x0))) → COND_EVAL(false, pos(0), pos(s(x0)))
EVAL(pos(0), neg(s(x0))) → COND_EVAL(true, pos(0), neg(s(x0)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 9 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
QDP
                                ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
COND_EVAL(true, x, y) → EVAL(minus_int(x, pos(s(0))), y)
EVAL(neg(0), neg(s(x0))) → COND_EVAL(true, neg(0), neg(s(x0)))
EVAL(neg(s(x0)), neg(s(x1))) → COND_EVAL(greater_int(neg(x0), neg(x1)), neg(s(x0)), neg(s(x1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(0), neg(s(x0))) → COND_EVAL(true, pos(0), neg(s(x0)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
COND_EVAL(true, x, y) → EVAL(minus_int(x, pos(s(0))), y)
EVAL(neg(0), neg(s(x0))) → COND_EVAL(true, neg(0), neg(s(x0)))
EVAL(neg(s(x0)), neg(s(x1))) → COND_EVAL(greater_int(neg(x0), neg(x1)), neg(s(x0)), neg(s(x1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(0), neg(s(x0))) → COND_EVAL(true, pos(0), neg(s(x0)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))

The TRS R consists of the following rules:

greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule COND_EVAL(true, x, y) → EVAL(minus_int(x, pos(s(0))), y) at position [0] we obtained the following new rules [LPAR04]:

COND_EVAL(true, pos(x0), y1) → EVAL(minus_nat(x0, s(0)), y1)
COND_EVAL(true, neg(x0), y1) → EVAL(neg(plus_nat(x0, s(0))), y1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
QDP
                                        ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
EVAL(neg(0), neg(s(x0))) → COND_EVAL(true, neg(0), neg(s(x0)))
EVAL(neg(s(x0)), neg(s(x1))) → COND_EVAL(greater_int(neg(x0), neg(x1)), neg(s(x0)), neg(s(x1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(0), neg(s(x0))) → COND_EVAL(true, pos(0), neg(s(x0)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))
COND_EVAL(true, pos(x0), y1) → EVAL(minus_nat(x0, s(0)), y1)
COND_EVAL(true, neg(x0), y1) → EVAL(neg(plus_nat(x0, s(0))), y1)

The TRS R consists of the following rules:

greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
QDP
                                              ↳ UsableRulesProof
                                            ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, neg(x0), y1) → EVAL(neg(plus_nat(x0, s(0))), y1)
EVAL(neg(0), neg(s(x0))) → COND_EVAL(true, neg(0), neg(s(x0)))
EVAL(neg(s(x0)), neg(s(x1))) → COND_EVAL(greater_int(neg(x0), neg(x1)), neg(s(x0)), neg(s(x1)))

The TRS R consists of the following rules:

greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                              ↳ UsableRulesProof
QDP
                                                  ↳ QReductionProof
                                            ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, neg(x0), y1) → EVAL(neg(plus_nat(x0, s(0))), y1)
EVAL(neg(0), neg(s(x0))) → COND_EVAL(true, neg(0), neg(s(x0)))
EVAL(neg(s(x0)), neg(s(x1))) → COND_EVAL(greater_int(neg(x0), neg(x1)), neg(s(x0)), neg(s(x1)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
QDP
                                                      ↳ Narrowing
                                            ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, neg(x0), y1) → EVAL(neg(plus_nat(x0, s(0))), y1)
EVAL(neg(0), neg(s(x0))) → COND_EVAL(true, neg(0), neg(s(x0)))
EVAL(neg(s(x0)), neg(s(x1))) → COND_EVAL(greater_int(neg(x0), neg(x1)), neg(s(x0)), neg(s(x1)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule COND_EVAL(true, neg(x0), y1) → EVAL(neg(plus_nat(x0, s(0))), y1) at position [0,0] we obtained the following new rules [LPAR04]:

COND_EVAL(true, neg(s(x0)), y1) → EVAL(neg(s(plus_nat(x0, s(0)))), y1)
COND_EVAL(true, neg(0), y1) → EVAL(neg(s(0)), y1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
QDP
                                                          ↳ DependencyGraphProof
                                            ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(0), neg(s(x0))) → COND_EVAL(true, neg(0), neg(s(x0)))
EVAL(neg(s(x0)), neg(s(x1))) → COND_EVAL(greater_int(neg(x0), neg(x1)), neg(s(x0)), neg(s(x1)))
COND_EVAL(true, neg(s(x0)), y1) → EVAL(neg(s(plus_nat(x0, s(0)))), y1)
COND_EVAL(true, neg(0), y1) → EVAL(neg(s(0)), y1)

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
QDP
                                                              ↳ Instantiation
                                            ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, neg(s(x0)), y1) → EVAL(neg(s(plus_nat(x0, s(0)))), y1)
EVAL(neg(s(x0)), neg(s(x1))) → COND_EVAL(greater_int(neg(x0), neg(x1)), neg(s(x0)), neg(s(x1)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule COND_EVAL(true, neg(s(x0)), y1) → EVAL(neg(s(plus_nat(x0, s(0)))), y1) we obtained the following new rules [LPAR04]:

COND_EVAL(true, neg(s(z0)), neg(s(z1))) → EVAL(neg(s(plus_nat(z0, s(0)))), neg(s(z1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Instantiation
QDP
                                                                  ↳ QReductionProof
                                            ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(s(x0)), neg(s(x1))) → COND_EVAL(greater_int(neg(x0), neg(x1)), neg(s(x0)), neg(s(x1)))
COND_EVAL(true, neg(s(z0)), neg(s(z1))) → EVAL(neg(s(plus_nat(z0, s(0)))), neg(s(z1)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN].

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Instantiation
                                                                ↳ QDP
                                                                  ↳ QReductionProof
QDP
                                                                      ↳ MNOCProof
                                            ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(s(x0)), neg(s(x1))) → COND_EVAL(greater_int(neg(x0), neg(x1)), neg(s(x0)), neg(s(x1)))
COND_EVAL(true, neg(s(z0)), neg(s(z1))) → EVAL(neg(s(plus_nat(z0, s(0)))), neg(s(z1)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greater_int(neg(0), neg(0))
greater_int(neg(0), neg(s(x0)))
greater_int(neg(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all (P,Q,R)-chains.
We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Instantiation
                                                                ↳ QDP
                                                                  ↳ QReductionProof
                                                                    ↳ QDP
                                                                      ↳ MNOCProof
QDP
                                            ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(s(x0)), neg(s(x1))) → COND_EVAL(greater_int(neg(x0), neg(x1)), neg(s(x0)), neg(s(x1)))
COND_EVAL(true, neg(s(z0)), neg(s(z1))) → EVAL(neg(s(plus_nat(z0, s(0)))), neg(s(z1)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
QDP
                                              ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(x0), y1) → EVAL(minus_nat(x0, s(0)), y1)
EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(0), neg(s(x0))) → COND_EVAL(true, pos(0), neg(s(x0)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))

The TRS R consists of the following rules:

greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
QDP
                                                  ↳ QReductionProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(x0), y1) → EVAL(minus_nat(x0, s(0)), y1)
EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(0), neg(s(x0))) → COND_EVAL(true, pos(0), neg(s(x0)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))

The TRS R consists of the following rules:

minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
QDP
                                                      ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(x0), y1) → EVAL(minus_nat(x0, s(0)), y1)
EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(0), neg(s(x0))) → COND_EVAL(true, pos(0), neg(s(x0)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))

The TRS R consists of the following rules:

minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule COND_EVAL(true, pos(x0), y1) → EVAL(minus_nat(x0, s(0)), y1) at position [0] we obtained the following new rules [LPAR04]:

COND_EVAL(true, pos(s(x0)), y1) → EVAL(minus_nat(x0, 0), y1)
COND_EVAL(true, pos(0), y1) → EVAL(neg(s(0)), y1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
QDP
                                                          ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(0), neg(s(x0))) → COND_EVAL(true, pos(0), neg(s(x0)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))
COND_EVAL(true, pos(s(x0)), y1) → EVAL(minus_nat(x0, 0), y1)
COND_EVAL(true, pos(0), y1) → EVAL(neg(s(0)), y1)

The TRS R consists of the following rules:

minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
QDP
                                                              ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(x0)), y1) → EVAL(minus_nat(x0, 0), y1)
EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))

The TRS R consists of the following rules:

minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
QDP
                                                                  ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(x0)), y1) → EVAL(minus_nat(x0, 0), y1)
EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule COND_EVAL(true, pos(s(x0)), y1) → EVAL(minus_nat(x0, 0), y1) at position [0] we obtained the following new rules [LPAR04]:

COND_EVAL(true, pos(s(0)), y1) → EVAL(pos(0), y1)
COND_EVAL(true, pos(s(s(x0))), y1) → EVAL(pos(s(x0)), y1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
QDP
                                                                      ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))
COND_EVAL(true, pos(s(0)), y1) → EVAL(pos(0), y1)
COND_EVAL(true, pos(s(s(x0))), y1) → EVAL(pos(s(x0)), y1)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
QDP
                                                                          ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), y1) → EVAL(pos(s(x0)), y1)
EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
QDP
                                                                              ↳ QReductionProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), y1) → EVAL(pos(s(x0)), y1)
EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
QDP
                                                                                  ↳ Instantiation
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), y1) → EVAL(pos(s(x0)), y1)
EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule COND_EVAL(true, pos(s(s(x0))), y1) → EVAL(pos(s(x0)), y1) we obtained the following new rules [LPAR04]:

COND_EVAL(true, pos(s(s(x0))), neg(0)) → EVAL(pos(s(x0)), neg(0))
COND_EVAL(true, pos(s(s(x0))), neg(s(z1))) → EVAL(pos(s(x0)), neg(s(z1)))
COND_EVAL(true, pos(s(s(x0))), pos(0)) → EVAL(pos(s(x0)), pos(0))
COND_EVAL(true, pos(s(s(x0))), pos(s(z1))) → EVAL(pos(s(x0)), pos(s(z1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
QDP
                                                                                      ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))
COND_EVAL(true, pos(s(s(x0))), neg(0)) → EVAL(pos(s(x0)), neg(0))
COND_EVAL(true, pos(s(s(x0))), neg(s(z1))) → EVAL(pos(s(x0)), neg(s(z1)))
COND_EVAL(true, pos(s(s(x0))), pos(0)) → EVAL(pos(s(x0)), pos(0))
COND_EVAL(true, pos(s(s(x0))), pos(s(z1))) → EVAL(pos(s(x0)), pos(s(z1)))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
QDP
                                                                                            ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), neg(0)) → EVAL(pos(s(x0)), neg(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
QDP
                                                                                                ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), neg(0)) → EVAL(pos(s(x0)), neg(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))

R is empty.
The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
QDP
                                                                                                    ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), neg(0)) → EVAL(pos(s(x0)), neg(0))
EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [JAR06] the rule EVAL(pos(s(x0)), neg(0)) → COND_EVAL(true, pos(s(x0)), neg(0)) we obtained the following new rules [LPAR04]:

EVAL(pos(s(s(y_0))), neg(0)) → COND_EVAL(true, pos(s(s(y_0))), neg(0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ ForwardInstantiation
QDP
                                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), neg(0)) → EVAL(pos(s(x0)), neg(0))
EVAL(pos(s(s(y_0))), neg(0)) → COND_EVAL(true, pos(s(s(y_0))), neg(0))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [JAR06] the rule COND_EVAL(true, pos(s(s(x0))), neg(0)) → EVAL(pos(s(x0)), neg(0)) we obtained the following new rules [LPAR04]:

COND_EVAL(true, pos(s(s(s(y_0)))), neg(0)) → EVAL(pos(s(s(y_0))), neg(0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ ForwardInstantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ ForwardInstantiation
QDP
                                                                                                            ↳ MRRProof
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(pos(s(s(y_0))), neg(0)) → COND_EVAL(true, pos(s(s(y_0))), neg(0))
COND_EVAL(true, pos(s(s(s(y_0)))), neg(0)) → EVAL(pos(s(s(y_0))), neg(0))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

EVAL(pos(s(s(y_0))), neg(0)) → COND_EVAL(true, pos(s(s(y_0))), neg(0))
COND_EVAL(true, pos(s(s(s(y_0)))), neg(0)) → EVAL(pos(s(s(y_0))), neg(0))


Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(COND_EVAL(x1, x2, x3)) = x1 + x2 + x3   
POL(EVAL(x1, x2)) = 1 + x1 + x2   
POL(neg(x1)) = x1   
POL(pos(x1)) = x1   
POL(s(x1)) = 2 + x1   
POL(true) = 0   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ ForwardInstantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ ForwardInstantiation
                                                                                                          ↳ QDP
                                                                                                            ↳ MRRProof
QDP
                                                                                                                ↳ PisEmptyProof
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
QDP
                                                                                            ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), pos(0)) → EVAL(pos(s(x0)), pos(0))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
QDP
                                                                                                ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), pos(0)) → EVAL(pos(s(x0)), pos(0))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))

R is empty.
The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
QDP
                                                                                                    ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), pos(0)) → EVAL(pos(s(x0)), pos(0))
EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [JAR06] the rule EVAL(pos(s(x0)), pos(0)) → COND_EVAL(true, pos(s(x0)), pos(0)) we obtained the following new rules [LPAR04]:

EVAL(pos(s(s(y_0))), pos(0)) → COND_EVAL(true, pos(s(s(y_0))), pos(0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ ForwardInstantiation
QDP
                                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), pos(0)) → EVAL(pos(s(x0)), pos(0))
EVAL(pos(s(s(y_0))), pos(0)) → COND_EVAL(true, pos(s(s(y_0))), pos(0))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [JAR06] the rule COND_EVAL(true, pos(s(s(x0))), pos(0)) → EVAL(pos(s(x0)), pos(0)) we obtained the following new rules [LPAR04]:

COND_EVAL(true, pos(s(s(s(y_0)))), pos(0)) → EVAL(pos(s(s(y_0))), pos(0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ ForwardInstantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ ForwardInstantiation
QDP
                                                                                                            ↳ MRRProof
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(pos(s(s(y_0))), pos(0)) → COND_EVAL(true, pos(s(s(y_0))), pos(0))
COND_EVAL(true, pos(s(s(s(y_0)))), pos(0)) → EVAL(pos(s(s(y_0))), pos(0))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

EVAL(pos(s(s(y_0))), pos(0)) → COND_EVAL(true, pos(s(s(y_0))), pos(0))
COND_EVAL(true, pos(s(s(s(y_0)))), pos(0)) → EVAL(pos(s(s(y_0))), pos(0))


Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(COND_EVAL(x1, x2, x3)) = x1 + x2 + x3   
POL(EVAL(x1, x2)) = 1 + x1 + x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 2 + x1   
POL(true) = 0   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ ForwardInstantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ ForwardInstantiation
                                                                                                          ↳ QDP
                                                                                                            ↳ MRRProof
QDP
                                                                                                                ↳ PisEmptyProof
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
QDP
                                                                                            ↳ UsableRulesProof
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), neg(s(z1))) → EVAL(pos(s(x0)), neg(s(z1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
QDP
                                                                                                ↳ QReductionProof
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), neg(s(z1))) → EVAL(pos(s(x0)), neg(s(z1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))

R is empty.
The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
QDP
                                                                                                    ↳ ForwardInstantiation
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), neg(s(z1))) → EVAL(pos(s(x0)), neg(s(z1)))
EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1)))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [JAR06] the rule EVAL(pos(s(x0)), neg(s(x1))) → COND_EVAL(true, pos(s(x0)), neg(s(x1))) we obtained the following new rules [LPAR04]:

EVAL(pos(s(s(y_0))), neg(s(x1))) → COND_EVAL(true, pos(s(s(y_0))), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ ForwardInstantiation
QDP
                                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), neg(s(z1))) → EVAL(pos(s(x0)), neg(s(z1)))
EVAL(pos(s(s(y_0))), neg(s(x1))) → COND_EVAL(true, pos(s(s(y_0))), neg(s(x1)))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [JAR06] the rule COND_EVAL(true, pos(s(s(x0))), neg(s(z1))) → EVAL(pos(s(x0)), neg(s(z1))) we obtained the following new rules [LPAR04]:

COND_EVAL(true, pos(s(s(s(y_0)))), neg(s(x1))) → EVAL(pos(s(s(y_0))), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ ForwardInstantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ ForwardInstantiation
QDP
                                                                                                            ↳ MRRProof
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(pos(s(s(y_0))), neg(s(x1))) → COND_EVAL(true, pos(s(s(y_0))), neg(s(x1)))
COND_EVAL(true, pos(s(s(s(y_0)))), neg(s(x1))) → EVAL(pos(s(s(y_0))), neg(s(x1)))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

EVAL(pos(s(s(y_0))), neg(s(x1))) → COND_EVAL(true, pos(s(s(y_0))), neg(s(x1)))
COND_EVAL(true, pos(s(s(s(y_0)))), neg(s(x1))) → EVAL(pos(s(s(y_0))), neg(s(x1)))


Used ordering: Polynomial interpretation [POLO]:

POL(COND_EVAL(x1, x2, x3)) = x1 + x2 + x3   
POL(EVAL(x1, x2)) = 1 + x1 + x2   
POL(neg(x1)) = x1   
POL(pos(x1)) = x1   
POL(s(x1)) = 2 + x1   
POL(true) = 0   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ ForwardInstantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ ForwardInstantiation
                                                                                                          ↳ QDP
                                                                                                            ↳ MRRProof
QDP
                                                                                                                ↳ PisEmptyProof
                                                                                          ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
QDP
                                                                                            ↳ ForwardInstantiation
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), pos(s(z1))) → EVAL(pos(s(x0)), pos(s(z1)))
EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [JAR06] the rule EVAL(pos(s(x0)), pos(s(x1))) → COND_EVAL(greater_int(pos(x0), pos(x1)), pos(s(x0)), pos(s(x1))) we obtained the following new rules [LPAR04]:

EVAL(pos(s(s(y_1))), pos(s(x1))) → COND_EVAL(greater_int(pos(s(y_1)), pos(x1)), pos(s(s(y_1))), pos(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
QDP
                                                                                                ↳ ForwardInstantiation
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(s(s(x0))), pos(s(z1))) → EVAL(pos(s(x0)), pos(s(z1)))
EVAL(pos(s(s(y_1))), pos(s(x1))) → COND_EVAL(greater_int(pos(s(y_1)), pos(x1)), pos(s(s(y_1))), pos(s(x1)))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [JAR06] the rule COND_EVAL(true, pos(s(s(x0))), pos(s(z1))) → EVAL(pos(s(x0)), pos(s(z1))) we obtained the following new rules [LPAR04]:

COND_EVAL(true, pos(s(s(s(y_0)))), pos(s(x1))) → EVAL(pos(s(s(y_0))), pos(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
                                                                                              ↳ QDP
                                                                                                ↳ ForwardInstantiation
QDP
                                                                                                    ↳ QDPOrderProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(pos(s(s(y_1))), pos(s(x1))) → COND_EVAL(greater_int(pos(s(y_1)), pos(x1)), pos(s(s(y_1))), pos(s(x1)))
COND_EVAL(true, pos(s(s(s(y_0)))), pos(s(x1))) → EVAL(pos(s(s(y_0))), pos(s(x1)))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


COND_EVAL(true, pos(s(s(s(y_0)))), pos(s(x1))) → EVAL(pos(s(s(y_0))), pos(s(x1)))
The remaining pairs can at least be oriented weakly.

EVAL(pos(s(s(y_1))), pos(s(x1))) → COND_EVAL(greater_int(pos(s(y_1)), pos(x1)), pos(s(s(y_1))), pos(s(x1)))
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(COND_EVAL(x1, x2, x3)) = 1 + x2 + x3   
POL(EVAL(x1, x2)) = 1 + x1 + x2   
POL(false) = 0   
POL(greater_int(x1, x2)) = 0   
POL(pos(x1)) = 1 + x1   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented: none



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ AND
                                            ↳ QDP
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ DependencyGraphProof
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
                                                                                              ↳ QDP
                                                                                                ↳ ForwardInstantiation
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
QDP
                                                                                                        ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(pos(s(s(y_1))), pos(s(x1))) → COND_EVAL(greater_int(pos(s(y_1)), pos(x1)), pos(s(s(y_1))), pos(s(x1)))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(x, y) → COND_EVAL(greater_int(x, y), x, y)
COND_EVAL(true, x, y) → EVAL(minus_int(x, pos(s(0))), y)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_eval(true, x0, x1)
eval(x0, x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Cond_eval(true, x0, x1)
eval(x0, x1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL(x, y) → COND_EVAL(greater_int(x, y), x, y)
COND_EVAL(true, x, y) → EVAL(minus_int(x, pos(s(0))), y)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.